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Abstract

This project considers the maximization of information rate on each link in the multiuser
non-cooperative communication system given the constraints on the transmit power.
By using a game theoretical approach, the interference channel can be modeled as a
non-cooperative power competing game among different users. The Nash Equilibrium
(NE) of the game gives the solution. There are three questions to ask: 1) whether the
NE exists? 2) if it exists, whether it is unique? 3) if it is unique, how to find the
equilibrium point? This problem has been studied in a number of papers. A variety of
conditions guaranteeing the existence and uniqueness of the NE has been given. The
convergence of many different distributed algorithms have also been derived. In this
project, I proposed Partially Asynchronous Iterative Waterfilling Algorithm to solve the
problem. The mathematical proof of its convergence and the numerical simulations
comparing with existing approaches have also been derived.



Acknowledgements

I would like to thank my supervisor Professor Daniel P. Palomar for the advice and sup-
port he has given me in the final year thesis. I would also like to express my gratefulness
to Mr. Jiaheng Wang for his encouragement and assistance. Finally, I would like to
thank Professor Matthew McKay for serving as my reading committee.



Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 System Model and Problem Formulation 4
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Mathematical Tools 7
3.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Convex Optimization Theory . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Fixed Point Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Distributed Algorithm Theory . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Norm Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Contraction Property of the Waterfilling Operator 12
4.1 Projection Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Contraction Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Existence and Uniqueness of the NE 15
5.1 Existence and Uniqueness of the NE . . . . . . . . . . . . . . . . . . . . 15
5.2 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 MIMO Partially Asynchronous Iterative Waterfilling Algorithm 16
6.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Convergence of the Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Numerical Analysis 19

8 Conclusions and Future Work 24

A Proof of Theorem 4.1:
Projection Interpretation of Waterfilling Mapping 25

i



B Proof of Theorem 4.2:
Contraction Property of Waterfilling Mapping 28

C Proof of Theorem 5.1 and 5.2 30
C.1 Proof of Theorem 5.1: Existence of the NE . . . . . . . . . . . . . . . . . 30
C.2 Proof of Theorem 5.2: Uniqueness of the NE . . . . . . . . . . . . . . . . 30

D Proof of Theorem 6.1:
Convergence of the Algorithms 31

Bibliography 33

ii



List of Figures

7.1 Relations of the Matlab Simulation Files . . . . . . . . . . . . . . . . . . 20
7.2 Sequential v.s. Simultaneous IWFA . . . . . . . . . . . . . . . . . . . . . 21
7.3 Simultaneous v.s. Partially Asynchronous IWFA . . . . . . . . . . . . . . 21
7.4 Different Time Constraints for Partially Asynchronous IWFA . . . . . . . 22
7.5 Pseudo-Totally v.s. Partially Asynchronous IWFA . . . . . . . . . . . . . 23

iii



Chapter 1

Introduction

The interference channel is a mathematical model relevant to many physical communica-
tion channels and multiuser systems where multiple uncoordinated links share a common
communication medium. It is characterized by its capacity region, defined as the set of
rates that can be simultaneously achieved by the users in the system. In principle, this
multi-objective optimization of the communication system requires a centralized solu-
tion, which has high complexity, heavy signaling and the coordination among the users.
Instead, the system can be designed in a game theoretical approach in a fully distributed
fashion with no centralized control. The basic idea is that users in the system can be mod-
eled as several players having different objectives, say maximizing their own information
rate, and behave selfishly without cooperation. Therefore, the original multi-objective
optimization problem is converted into a set of mutually coupled single-objective opti-
mization problems. The optimal solution to this approach is the achievement of Nash
Equilibrium (NE)[1]. Then iterative algorithms[2] can be utilized to solve this kind of
problems. Several researches have been done in this area. This project proposed an alter-
native iterative distributed algorithm to solve the problem. The condition guaranteeing
the convergence of the algorithm has been derived.

1.1 Related Work

From the communication system view, several communication systems with different re-
quirements and constraints have been studied. For Single-Input Single-Output (SISO)
systems, current work in the field can be divided in three large classes, according to
the kind of games dealt with: scalar, vector and matrix-valued power control games.
Users in scalar games have one degree of freedom to optimize their transmit power or
rate. Based on the standard function proposed in [3], solutions have been provided in
[4, 5, 6, 7, 8]. This kind of problem can also be recast as convex optimization problems
[9]. For vector games, it is more complicated as each user has several degrees of freedom
to maximize, e.g. power allocation across frequency bins. Since the seminal paper [10]
studying the maximization of the information rate of two-user SISO Digital Subscriber
Lines (DSL) system by strategic non-cooperative power competing game modeling, a
number of researches have been done for the case of SISO frequency-selective channels
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[11, 12, 13, 14]. In [15, 16], the problem was extended to matrix-valued games together
with spectral mask constraints. It is proved that complicated matrix-valued problems can
be converted into unified vector power control game with no performance penalty. For
more general Multiple-Input Multiple-Output (MIMO) cases, a two-user Multiple-Input
Single-Output (MISO) channel was studied [17]. Rate maximization game in MIMO
interference channels was studied in [18, 19, 20, 21]. Mutual information maximization
in MIMO Gaussian interference channel was studied in [22] together with the conditions
that guarantee the uniqueness of the NE of the MIMO game and the convergence of the
proposed distributed algorithms. However, those results above for MIMO systems are
valid only for nonsingular square channel matrices. [23] provides a complete characteri-
zation of the MIMO game for arbitrary channel matrices. Conditions guaranteeing both
the uniqueness of the NE and the convergence of the algorithms have been derived.

From distributed algorithm view, three major schemes of the distributed algorithm
have been considered according to the kinds of updating schedule [2]: Gauss-Seidel
scheme (i.e. synchronous sequential) [10, 11, 12, 13, 14], Jacobi Scheme (i.e. synchronous
simultaneously) [16, 24, 25] and totally asynchronous scheme [23, 26, 27]. Two iterative
and distributed algorithms have been applied based on those three kinds of updating
schemes, namely water-filling based algorithms [10, 11, 12, 13, 14, 16, 23, 24, 25, 26, 27]
and gradient-projection based algorithms [16].

From the view of approaches used to analyze the power competing game, three key
results are applied: 1) the interpretation of the waterfilling mapping as a projector [16,
22, 23]; 2) the interpretation of the NE of the game as the solution of a proper affine
Variational Inequality (VI) problem [14]; and 3) the interpretation of the waterfilling
mapping as a piecewise affine function [24].

1.2 Aim and Objectives

This project considers the maximization of information rate on each link in the multiuser
non-cooperative communication system given the constraints on the transmit power. In
order to avoid high complexity, heavy signaling and the coordination among the users
required by the centralized solution, distributed algorithms are used from a game the-
oretical approach. The system model considered in this project is mainly based on the
one discussed in [22]. MIMO interference channels with nonsingular square channel ma-
trices are assumed. By using the result of the interpretation of the waterfilling mapping
as a projector, I proposed the Partially Asynchronous Iterative Waterfilling Algorithm
(IWFA), which is a variation of the totally asynchronous IWFA and is the general case
for Gauss-Seidel, Jacobi and totally asynchronous schemes. Mathematical proof of the
convergence as well as numerical simulations and comparisons were also derived.

1.3 Report Outline

The report is organized as follows. Chapter 2 gives the system model and problem
formulation by game theoretical approach. Chapter 3 talks about the mathematical tools
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I used for modeling and solving the problem, including game theory, convex optimization
theory, fixed point theory, distributed algorithm theory and norm representation. In
Chapter 4, contraction property of the waterfilling operator, which is crucial in proving
the convergence of the distributed algorithm, is discussed. In Chapter 5, the conditions
guaranteeing the existence and uniqueness of the NE for the power competing game
are proved. Chapter 6 discusses the Partially Asynchronous IWFA and its convergence
conditions in details. Chapter 7 reports some numerical results and comparisons with
existing approaches. Finally, Chapter 8 draws some conclusions.
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Chapter 2

System Model and Problem
Formulation

In this chapter, a general system model is provided and the problem is formulated by
game theoretical approach.

2.1 System Model

The general system model [22] considers a Gaussian interference channel with Q links.
Each link is communicating through a MIMO channel with nTq transmitter and nRq

receivers. It can be represented as follows:

yq = Hqqxq +
∑
r 6=q

Hrqxq + nq, (2.1)

where xq ∈ CnTq is the vector transmitted by source q; yq ∈ CnRq is the vector received
by destination q; Hqq ∈ CnRq×nTq is the direct channel of link q and is assumed to be
square nonsingular; Hrq ∈ CnRq×nTr is the cross-channel matrix between source r and
destination q; and nq ∈ CnRq is the noise vector with covariance matrix Rnq .

∑
r 6=qHrqxq

represents the multi-user interference (MUI) received by the qth destination and caused
by other links; and it can be treated as additive noise. The total average transmit power
for each link q is

E{‖xq‖2
2} = Tr(Qq) ≤ Pq, (2.2)

where Qq = E{xqxHq } is the covariance matrix of the transmitted power in units of energy
per transmission and Pq is the power constraint for each link q.

This system model is sufficiently general to represent many cases of practical interest,
such as digital subsciber line, cellular radio and ad hoc wireless networks. It assumes
that each destination has perfect knowledge of the channel from its source, but not of
the channel from the interfering sources.

The maximum information rate on link q for a given set of users’ covariance matrices
Q1, ..., QQ is [28]

Rq(Qq, Q−q) = log det(I +HH
qqR

−1
−q(Q−q)HqqQq) (2.3)
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where R−q(Q−q) = Rnq +
∑

r 6=qHrqQrH
H
rq is the MUI plus noise covariance matrix ob-

served by user q, and Q−q = (Qr)
Q
r=1,r 6=q is the set of all the users’ covariance matrices,

except the q-th one.

2.2 Problem Formulation

The system can be formulated in a game theoretical approach [1]. In a general noncooper-
ative game, there are N players, each of whom has a certain payoff function and strategy
set that may depend on the other players’ actions. Assume that player i’s strategy set
is Ki, which is a subset of Rni and is independent of the other players’ actions. Player
i’s payoff function θi(x) depends on all players’ strategies, which are described by the
vector x that consists of the subvectors xi ∈ Rni for i = 1, ..., N . Player i’s problem is to
determine, for each fixed but arbitrary tuple x̃i = (xj : j 6= i) of other players’ strategies,
an optimal strategy xi that solves the payoff maximization problem in the variable xi:

maximize{xi} θi(x
i, x̃i)

subject to xi ∈ Ki (2.4)

The solution set of the optimization problem is denoted by Si(x̃
i). A Nash Equilibrium

(NE) is a tuple of strategies x = (xi : i = 1, ..., N) with the property that for each i,
xi ∈ Si(x̃

i). In words, a NE is a tuple of strategies, one for each player, such that no
player can enlarge the payoff by unilaterally deviating his action from his designated
strategy.

In this system, the players are the Q links and the payoff functions are the information
rates Rq(Qq, Q−q) on each link, where transmit covariance matrix Qq is the strategy that
can be used by user q. Thus, this system has the following structure:

(G) maximize{Qq} Rq(Qq, Q−q)

subject to Qq ∈ Qq, ∀q ∈ Ω (2.5)

where Ω = {1, ..., Q} is the set of players and Qq is the set of admissible strategies for
each player q:

Qq = {Q ∈ CnTq×nTq : Q � 0, T r{Q} = Pq} (2.6)

The solution of the game G is the NE.
Notice that Q = QH since any complex positive semidefinite matrix must be neces-

sarily hermitian[29]. Here Tr{Q} = Pq was used instead of Tr{Q} ≤ Pq as originally
mentioned in (2.2) because at the optimal solution of the game G, the constraint must
be satisfied with equality.

Definition 2.1. [1] A NE of a pure strategic game G is a profile Q∗ = (Q∗q)q∈Ω ∈
Q1 × ...×QQ with the property that

Rq(Q
∗
q, Q

∗
−q) ≥ Rq(Qq, Q

∗
−q), ∀Qq ∈ Qq,∀q ∈ Ω (2.7)
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Definition 2.2. [1] A NE of a mixed strategic game Ḡ is a profile Q̄∗ = (Q̄∗q)q∈Ω ∈
Q̄1 × ...× Q̄Q with the property that

EfQq
EfQ−q

{Rq(Q
∗
q, Q

∗
−q)} ≥ EfQq

EfQ−q
{Rq(Qq, Q

∗
−q)}, ∀Qq ∈ Qq,∀q ∈ Ω (2.8)

where Ḡ = {Ω, {Q̄q}q∈Ω, {R̄q}q∈Ω}; Q̄q denotes the set of the probability distributions
over the set Qq of pure strategies; EfQq

EfQ−q
(Rq) is the expectation of Rq over the mixed

strategies of all players; and fQq(Qq) is the probability density function.

We can actually limit ourselves to adopt pure strategies only. Given Jensen’s inequal-
ity [28] and the concavity of the function Rq(Qq, Q−q), we have

EfQq
EfQ−q

{Rq(Qq, Q−q)} ≤ EfQ−q
{Rq(EfQq

{Qq}, Q−q)},∀Qq ∈ Qq,∀q ∈ Ω (2.9)

The equality holds if and only if Qq reduces to a pure strategy. Therefore, whatever the
strategies of the other players are, every NE of the game is achieved using pure strategies
[15].

Given q ∈ Ω and Q−q ∈ Q−q = Q1 × ... × Qq−1,Qq+1 × ... × QQ, the solution to
problem (2.5) is the waterfilling solution [28]:

Q∗q = WFq(Q−q) (2.10)

By the eigendecomposition of HH
qqR

−1
−q(Q−q)Hqq = UqDqU

H
q from equation (2.3), where

Uq = Uq(Q−q) ∈ CnTq×nTq is a unitary matrix with the eigenvectors and Dq = Dq(Q−q) ∈
RnTq×nTq

++ is a diagonal matrix with nTq positive eigenvalues, the waterfilling operator
WF (.) can be written as

WFq(Q−q) = Uq(µqI −D−1
q )+UH

q (2.11)

where µq is the waterlevel satisfying Tr{(µqI −D−1
q )+} = Pq with (x)+ = max(0, x).

By Definition 2.1 and waterfilling solution (2.10), the NE of the game G can be
charachterized as the waterfilling fixed-point equation:

Q∗q = WFq(Q
∗
−q), ∀q ∈ Ω (2.12)

To study game G, the fixed-point mapping of the NE and an alternative interpreta-
tion of the MIMO waterfilling solution as a proper projector operator are crucial for the
derivation of the conditions for the existence and uniqueness of the NE and the conver-
gence of the partially asynchronous distributed algorithm. In Chapter 3, mathematical
tools that we are going to use to analyze the game will be discussed.
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Chapter 3

Mathematical Tools

This chapter talks about the mathematical tools used to analyze the strategic power
competing game. The standard results from game theory, convex optimization theory,
fixed-point theory, distributed algorithm theory and Norm Representation are very im-
portant for the derivation of the conditions for the existence and uniqueness of the NE
and the convergence of the partially asynchronous distributed algorithm.

3.1 Game Theory

Theorem 3.1. [1, 30] The strategic noncooperative game G = {Ω, {Qq}q∈Ω, {Rq}q∈Ω}
admits at least one NE if, for all q ∈ Ω: 1) the set Qq of feasible strategy profiles is
compact and convex; and 2) the payoff function Rq is continuous on Q ∈ Q and concave
in Qq ∈ Qq, for any given Q−q ∈ Q−q. (This theorem is formulated by the notations used
in this report.)

Theorem 3.1 will be used to prove the existence of the NE for the power competing
game.

3.2 Convex Optimization Theory

Consider the optimization problem in the standard form:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m (3.1)

hj(x) = 0, j = 1, ..., p

The domain is D =
⋂m
i=0 domfi ∩

⋂p
j=1 domhi. The Lagrangian is

L(x, λ, ν) = f0(x) +
m∑
i=1

λTi fi(x) +

p∑
j=1

νjhj(x) (3.2)
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where λ = (λ1, ..., λm) and ν = (ν1, ..., νp) are the Lagrangian multipliers. The dual
function is defined as:

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(f0(x) +
m∑
i=1

λTi fi(x) +

p∑
j=1

νjhj(x)) (3.3)

Thus the Lagrange dual problem is [31]:

maximize g(λ, ν)

subject to λi ≥ 0, i = 1, ...,m (3.4)

The dual function (3.3) yields lower bounds on the optimal value p∗ of the problem (3.1)
and we have g(λ, ν) ≤ p∗. The optimal value of the Lagrange dual problem (3.4) d∗ is
the best (largest) lower bound on p∗ and we have d∗ ≤ p∗.

Theorem 3.2. [31] (Slater’s Condition) Strong duality (d∗ = p∗) holds when the primal
problems f0, ..., fm of problem (3.1) are convex and there exists an x ∈ relintD such that
fi(x) < 0, i = 1, ...,m and hj(x) = 0, j = 1, ..., p.

For problem (3.1), when strong duality holds, x is optimal if and only if there exist
λ, ν that satisfy Karush-Kuhn-Tucker (KKT) conditions [31]. The Lagrange, Slater’s
condition and KKT conditions was used when discussing the contraction property of the
waterfilling operator.

3.3 Fixed Point Theory

Definition 3.1. [2] (Contraction Mapping) Many iterative algorithms can be written as

x(n+ 1) = T (x(n)), n = 0, 1, ... (3.5)

where T is a mapping from a subset X of Rn into itself and has the property

‖T (x)− T (y)‖ ≤ α‖x− y‖, x, y ∈ X . (3.6)

‖.‖ is some norm and α ∈ [0, 1) is a constant. Such a mapping is called a contraction
mapping and iteration (3.5) is called a contracting iteration. Scalar α is called the
modulus of mapping T .

Definition 3.2. [2] (Fixed Point) For the mapping T : X 7→ X , any vector x∗ ∈ X
satisfying T (x∗) = x∗ is called a fixed point of T and the iteration x := T (x) can be
viewed as an algorithm for finding such a fixed point.
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Theorem 3.3. [2, 32] (Existence and Uniqueness of the Fixed Point) Suppose that T :
X 7→ X is a continuous and contraction mapping with modulus α ∈ [0, 1); and that
X ⊆ Rn is nonempty, convex and compact (closed and bounded). Then there exists some
unique x∗ such that x∗ = T (x∗).

The contraction property and theorem 3.3 was used for deriving conditions guaran-
teeing existence and uniqueness of the NE for the strategic power competing game.

3.4 Distributed Algorithm Theory

Nonlinear fixed-point problems are typically solved by iterative methods, especially dis-
tributed algorithms. From Definition 3.2, the iteration x := T (x) can be viewed as an
algorithm for finding such a fixed point. Three major schemes of the distributed algorithm
have been considered for the power competing game according to the kinds of updating
schedule [2]: Gauss-Seidel scheme, Jacobi scheme and Totally Asynchronous scheme. In
this report, I propose a distributed algorithm based on Partially Asynchronous scheme.

Definition 3.3. [2] (Partially Asynchronous Algorithm Model) Let X1,X2, ...,XQ be the
given sets and let X = X1 × X2 × ... × XQ be their Cartesian product. The mappings
Tq : X 7→ Xq, q = 1, ..., Q and T : X 7→ X are given, where T (x) = (T1(x), ..., TQ(x)) and
it is assumed to admit a fixed point x∗ = T (x∗). We consider the following distributed
partially asynchronous iterative algorithm:

x(n+1)
q =

{
Tq(x

(τq
1 (n))

1 , ..., x
(τq

Q(n))

Q ), if n ∈ Tq
x

(n)
q , otherwise

∀q ∈ Ω = {1, ..., Q} (3.7)

with τ qr (n) denoting the most recent time at which the interference from user r is perceived

by user q at the n-th iteration and Tq denoting the set of times n at which x
(n)
q is updated.

τ qr (n) and Tq satisfy the following assumptions.

Assumption 3.1. (Partial Asynchronism) There exists a positive integer B such that:

a) For every q and for every n ≥ 0, at least one of the elements of the set {n, n +
1, ..., n+B − 1} belongs to Tq.

b) There holds
n−B < τ qr (n) ≤ n, (3.8)

for all r and q, and all n ≥ 0 belonging to Tq.

c) There holds τ qq (n) = n for all q and n ∈ Tq.

We study the case where T has the following properties:
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Assumption 3.2. By using the notations in Definition 3.3, it is assumed that:

a) The set X ∗ is nonempty and convex.

b) The function T is continuous and nonexpansive, that is, it satisfies

‖T (x)− x∗‖∞ ≤ ‖x− x∗‖∞,∀x ∈ X ,∀x∗ ∈ X ∗ (3.9)

c) For every x ∈ X and x∗ ∈ X ∗ such that ‖x − x∗‖∞ > 0, there exists some i such
that ‖xi − x∗i ‖ = ‖x− x∗‖∞ and Ti(x) 6= xi.

d) If x ∈ X , Ti(x) 6= xi, and x∗ ∈ X ∗, then ‖Ti(x)− xi‖ < ‖x− x∗‖∞.

We can see that Assumption 3.2(c) and 3.2(d) are closely related to the contraction
property of the function T .

We have the following theorem showing that Assumption 3.2(d) is automatically true
for certain algorithms involving a relaxation parameter.

Theorem 3.4. [2] Suppose that a function T : X 7→ X satisfies Assumption 3.2(a),
3.2(b) and 3.2(c). Let γ ∈ (0, 1). Then the mapping F : X 7→ X defined by

F (x) = γx+ (1− γ)T (x) (3.10)

satisfies Assumption 3.2.

Then we have the following result:

Theorem 3.5. [2] Suppose that T : X 7→ X satisfies Assumption 3.2 and suppose that
Assumption 3.1 (Partial Asynchronism) holds. Then the sequence {x(n)} generated by
the asynchronous iteration x := T (x) converges to some element of X ∗.

We will utilize Theorem 3.5 to derive the conditions guaranteeing the convergence of
the iterative distributed algorithm based on the partially asynchronous scheme.

3.5 Norm Representation

The contraction property of the mapping is norm-dependent. The choice of the proper
norm is a critical issue and several norms are introduced in this section.

Definition 3.4. [2] (Block-maximum Norm) Given the mapping T from Definition 3.3
and w = [w1, ..., wQ]T > 0, let ‖.‖wF,blcok denote the block-maximum norm, defined as

‖T (x)‖wF,block = max
q∈Ω

‖Tq(x)‖F
wq

(3.11)
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Definition 3.5. [29] (Vector Weighted Maximum Norm) Given w = [w1, ..., wQ]T > 0
and x ∈ RQ, let ‖.‖w∞,vec denote the vector weighted maximum norm, defined as

‖x‖w∞,vec = max
q∈Ω

|xq|
wq

(3.12)

Definition 3.6. [29] (Matrix Norm) Given w = [w1, ..., wQ]T > 0 and A ∈ RQ×Q, let
‖.‖w∞,mat denote the matrix norm, defined as

‖A‖w∞,mat = max
q∈Ω

1

wq

Q∑
r=1

|[A]qr|wr (3.13)

3.6 Others

Some other mathematic results which will be used are listed here.

Theorem 3.6. [2] (Projection Theorem) For every X ∈ Cn×n, there exists a unique
Z ∈ X that minimizes ‖Z − X‖F over all Z ∈ X , and will be denoted by [X]+. The
mapping F : Cn×n 7→ X defined by F (X) = [X]+ is continuous and nonexpensive, that
is,

‖[X]+ − [Y ]+‖F ≤ ‖X − Y ‖F , ∀X, Y ∈ Cn×n (3.14)

Theorem 3.7. [2] If M is a square nonnegative matrix, then the following are equivalent:

1. ρ(M) < 1

2. There exists some w > 0 such that ‖M‖w∞ < 1

11



Chapter 4

Contraction Property of the
Waterfilling Operator

From the previous chapter, we can see that the contraction property of the function is the
key to the derivation of the conditions guaranteeing the existence and uniqueness of the
NE and the convergence of the iterative distributed algorithm. This chapter will discuss
the contraction property of the multi-user waterfilling operator, which is based on the
interpretation of MIMO waterfilling operator as a matrix projection onto the convex set
of feasible strategies of the users. The derivation of the contraction property is based on
[27] and it will be outlined in this chapter.

4.1 Projection Interpretation

This section interprets the MIMO waterfilling operator as a matrix projection onto the
convex set of feasible strategies of the users.

From equation (2.3), we have

Rq(Qq, Q−q) = log det(I+HH
qqR

−1
−q(Q−q)HqqQq) = log det(I+R−1

−q(Q−q)HqqQqH
H
qq) (4.1)

and maximizing log det(I+R−1
−q(Q−q)HqqQqH

H
qq) is the same as maximizing log det(R−q(Q−q)+

HqqQqH
H
qq). So game G can be equivalently written as:

(G ′) maximize{Qq} log det(R−q(Q−q) +HqqQqH
H
qq)

subject to Qq ∈ Qq, ∀q ∈ Ω (4.2)

It can be further simplified as ∀q ∈ Ω

(P1) maximize{Qq�0} log det(R−q(Q−q) +HqqQqH
H
qq)

subject to Tr{Qq} ≤ Pq (4.3)

which is actually a convex optimization problem.
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Theorem 4.1. [27] (Projection Interpretation of Waterfilling Mapping) The convex op-
timization problem P1 has the same unique solution as the following convex optimization
problem:

(P2) minimize{Qq�0}
1

2
‖Qq −Q0‖2

F

subject to Tr{Qq} = Pq (4.4)

where Q0 = −(HH
qqR

−1
−q(Q−q)Hqq)

−1.

Proof. See Appendix A.

By denoting the matrix projection of Q0 with respect to the Frobeius norm onto the
set Qq by [Q0]Qq and using Theorem 4.1, we have

Lemma 4.1. The waterfilling operator WFq(Q−q) in (2.11) can be equivalently written
as

WFq(Q−q) = [−(HH
qqR

−1
−q(Q−q)Hqq)

−1]Qq (4.5)

where Qq is defined in (2.6). Thus from (2.12) the NE of the Game G can be obtained
as the fixed-points of the mapping defined in (4.5):

Q∗q = WFq(Q
∗
−q) = [−(HH

qqR
−1
−q(Q

∗
−q)Hqq)

−1]Qq (4.6)

By Theorem 3.6 and the interpretation of the MIMO waterfilling as a projector, we
have the following nonexpansive property of the waterfilling operator, which will be used
to derive the contraction property of the MIMO waterfilling mapping.

Lemma 4.2. Matrix projection [.]Qq is continuous and satisfies the nonexpansive prop-
erty:

‖[X]Qq − [Y ]Qq‖F ≤ ‖X − Y ‖F , ∀X, Y ∈ CnTq×nTq (4.7)

4.2 Contraction Property

Define the nonnegative matrix S ∈ RQ×Q
+ as

[S]qr =

{
ρ(HH

rqH
−H
qq H−1

qq Hrq), if r 6= q
0, otherwise

(4.8)

where ρ(A) denotes the spectral radius of matrix A.
By Definition 3.4, we define the block-maximum norm for waterfilling mapping as

‖WF (Q)‖wF,block = max
q∈Ω

‖WFq(Q−q)‖F
wq

(4.9)
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where WF (Q) = (WFq(Q−q))q∈Ω : Q 7→ Q. Therefore, we have the fixed-points mapping
from (4.6):

Q∗ = WF (Q∗) (4.10)

Having the norm representation in Section 3.5, we have the following theorem on the
contraction property of the waterfilling property.

Theorem 4.2. [27] (Contraction Property of Waterfilling Mapping) Given w = [w1, ..., wQ]T >
0, the mapping WF defined in (4.9) is Lipschitz continuous on Q:

‖WF (Q(1))−WF (Q(2))‖wF,block ≤ ‖S‖w∞,mat‖Q(1) −Q(2)‖wF,block, ∀Q(1), Q(2) ∈ Q (4.11)

Furthermore, if
‖S‖w∞,mat < 1 (4.12)

for some w > 0, then mapping WF is a block-contraction with modulus β = ‖S‖w∞,mat.

Proof. See Appendix B.
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Chapter 5

Existence and Uniqueness of the NE

Using the mathematical tools and the contraction property of the waterfilling operator,
conditions for the existence and uniqueness of the NE can be derived.

5.1 Existence and Uniqueness of the NE

Theorem 5.1. [27] (Existence of the NE) Game G always admits a NE.

Proof. See Appendix C.1.

Theorem 5.2. [27] (Uniqueness of the NE) The NE of Game G is unique if

ρ(S) < 1 (5.1)

where S is defined in (4.8).

Proof. See Appendix C.2.

5.2 Physical Interpretation

The condition ρ(S) < 1 indicates that (I − S) is diagonally dominant, which means
that the sum of each link’s interference-to-signal ratio is less than one. This says that
the uniqueness of a NE is guaranteed if the interference among the links is sufficiently
small. The condition ρ(S) < 1 specifies the quantity of the interference to ensure the
NE’s uniqueness.
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Chapter 6

MIMO Partially Asynchronous
Iterative Waterfilling Algorithm

According to the discussion in Section 3.4, partially asynchronous algorithm model can
be used to solve the fixed-point problem and reach the NE of game G. According to this
model, users are allowed to update their strategies asynchronously without waiting for
other users. Thus some users may update their strategies more frequently. This gives
more freedom to users than the synchronous ones, like Gauss-Seidel and Jacobi schemes.
The term “partially” here corresponds to a time constraint on the information from
other users. Totally asynchronous scheme allows users to update a possibly outdated in-
formation from other users while partially asynchronous scheme adds the time constraint
and guarantees that other users’ information is not outdated. Based on the waterfilling
operator (2.11), partially asynchronous Iterative Waterfilling Algorithm (IWFA) will be
discussed in this chapter.

6.1 Algorithm Description

We define the following notations for the formal description of the proposed partially
asynchronous IWFA:

1. T = {0, 1, 2, ...} is the set of times.

2. Q
(n)
q is the covariance matrix of the vector signal transmitted by user q at the n-th

iteration.

3. Tq ∈ T is the set of times n when Q
(n)
q is updated.

4. τ qr (n) is the most recent time when the interference from user r is perceived by user
q at the n-th iteration.

5. Q
(τq(n))
−q = (Q

(τq
1 (n))

1 , ..., Q
(τq

q−1(n))

q−1 , Q
(τq

q+1(n))

q+1 , ..., Q
(τq

Q(n))

Q )

For partially asynchronous IWFA, Tq and τ qr (n) should satisfy Assumption 3.1 (Partial
Asynchronism). Using above notations and assumptions, the partially asynchronous
IWFA is described in Algorithm 1.
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Algorithm 1: MIMO Partially Asynchronous IWFA

Set n = 0 and Q
(0)
q = any feasible covariance matrix;

for n = 0 : Nit

Q(n+1)
q =

{
WFq(Q

(τq(n))
−q ), if n ∈ Tq

Q
(n)
q , otherwise

(6.1)

∀q ∈ Ω = {1, ..., Q}

end

This partially asynchronous IWFA can be implemented in a distributed way. When
each user maximize his own information rate, he only need to measure the covariance
matrix of the overall interference-plus-noise and then waterfill over this matrix.

Algorithm 1 is the generalization of sequential and simultaneous IWFAs [16], where
the users update their own strategies sequentially and simultaneously. It relaxes the
constraints on the synchronization of the users’ updates.

Algorithm 1 is also a generalization of MIMO totally asynchronous IWFA [27], where
the users updates their strategies based on possibly outdated information. When the
time constraint B in Assumption 3.1 goes to infinity (i.e. no time constraint), partially
asynchronous IWFA becomes totally asynchronous IWFA. This time constraint B avoid
the users to use outdated information perceived from other users. The value of the time
constraint B is up to the system design requirements.

We can generalize the partially asynchronous IWFA given in Algorithm 1 by intro-
ducing a memory in the updating process, as given in Algorithm 2. It is called smoothed
partially asynchronous IWFA.

Algorithm 2: MIMO Smoothed Partially Asynchronous IWFA

Set n = 0 and Q
(0)
q = any feasible covariance matrix and γq ∈ [0, 1),∀q ∈ Ω = {1, ..., Q};

for n = 0 : Nit

Q(n+1)
q =

{
γqQ

(n)
q + (1− γq)WFq(Q

(τq(n))
−q ), if n ∈ Tq

Q
(n)
q , otherwise

(6.2)

∀q ∈ Ω

end

The factor γq ∈ [0, 1) can be interpreted as a memory factor: the larger the γq is, the
longer the memory of the algorithm is.
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6.2 Convergence of the Algorithms

The convergence of the Algorithm 1 and 2 is guaranteed under the following sufficient
conditions.

Theorem 6.1. (Convergence of the Algorithms) Assume that the following condition is
satisfied

ρ(S) < 1 (6.3)

where S is defined in (4.8) and ρ(S) is the spectral radius of S. Then, as Nit→∞, the
MIMO Partially Asynchronous IWFA described in Algorithm 1 and the MIMO Smoothed
Partially Asynchronous IWFA described in Algorithm 2 converge to the unique NE of
game G, for any set of feasible initial conditions and updating schedule.

Proof. See Appendix D.

We can see that the condition guaranteeing the convergence of the MIMO Partially
Asynchronous IWFA coincides with the conditions ensuring the uniqueness of the NE of
game G; and it is independent on {Tq} and τ qr (n). Thus a unified condition is obtained.

Chapter 7 gives several simulations and will show that the convergence speed of Par-
tially Asynchronous IWFA is in between of Simultaneous IWFA and Totaly Asynchronous
IWFA.
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Chapter 7

Numerical Analysis

In this chapter, some numerical simulation results will be provided together with some
comparisons among proposed partially asynchronous IWFA and existing approaches.
Eight Matlab files are writen to do the numerical simulations:

1. FYT.m: It is the main function for the simulation of the FYT project.

2. Random Init.m: It randomly initializes the links, channel information and noise,
which will be needed later. It will be called by FYT.m.

3. MIMO Sequ IWFA.m: It is the algorithm simulation - MIMO Sequential IWFA. It
will be called by FYT.m.

4. MIMO Simu IWFA.m: It is the algorithm simulation - MIMO Simultaneous IWFA.
It will be called by FYT.m.

5. MIMO Part Asyn IWFA.m: It is the algorithm simulation - MIMO Partially Asyn-
chronous IWFA. It will be called by FYT.m.

6. R q.m: It calculates the information rate on link q. It will be called by
MIMO Sequ IWFA.m, MIMO Simu IWFA.m and MIMO Part Asyn IWFA.m.

7. WF q.m: It is the waterfilling operator updates link q’s power allocation according
to other links’ interference and the noise. It will be called by MIMO Sequ IWFA.m,
MIMO Simu IWFA.m and MIMO Part Asyn IWFA.m.

8. Rate neg q.m: It calculates the MUI plus noise covariance matrix observed by link
q. It will be called by R q.m and WF q.m.

Figure 7.1 illustrates the internal relations of those eight Matlab simulation files and
how they work. The arrow A → B indicates that file A is called by file B. The Matlab
files will be included in the CD along with this report.

All the simulations included below considers the MIMO system having 4 links and each
link has a 4× 4 transmit-and-receive dimension. The number of links and the transmit-
and-receive dimension for each link can be adjusted in file Random Init.m. There are
four numerical simulations.
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Figure 7.1: Relations of the Matlab Simulation Files

Simulation 1 - Sequential v.s. Simultaneous IWFA: Sequential and simultaneous
IWFA have been proposed in some related work [16]. Figure 7.2 compares the rate
evolution of the 4 links of those two algorithms. We can see that simultaneous IWFA is
faster than sequential IWFA as expected as the users do not need to wait for other users
scheduled in advance before updating his own power allocation.

Simulation 2 - Simultaneous v.s. Partially Asynchronous IWFA: Figure 7.3 compares
the rate evolution of the 4 links of simultaneous and partially asynchronous IWFA. We
can see that when the time constraint B = 1 for partially asynchronous IWFA, its rate
evolution curves are the same as the simultaneous IWFA, which indicates that simulta-
neous IWFA is a special case of partially asynchronous IWFA. Actually, we can easily
see this relation from Definition 3.3 and Assumption 3.1 that when the time constraint
B = 1, each user needs to update their power strategy at each time, which is also the
case for simultaneous IWFA.

Simulation 3 - Different Time Constraints for Partially Asynchronous IWFA: Figure
7.4 compares partially asynchronous IWFA with different time constraint B. We can see
that the larger the value of B is, the longer the time it takes to converge. This makes sense
as when B is larger, users may use outdated information and some user may updates his
power strategy slower than other ones, which slows down the convergence speed. When
B decreases to 1, partially asynchronous IWFA becomes simultaneous IWFA and the
convergence speed is the fastest.

Simulation 4 - Pseudo-Totally v.s. Partially Asynchronous IWFA: Figure 7.5 com-
pares the rate evolution of pseudo-totally and partially asynchronous IWFA. The term
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Figure 7.2: Sequential v.s. Simultaneous IWFA

Figure 7.3: Simultaneous v.s. Partially Asynchronous IWFA
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Figure 7.4: Different Time Constraints for Partially Asynchronous IWFA

pseudo here means that it is actually a partially asynchronous IWFA with a large value
of time constraint B. If B →∞, which means no time constraint, partially asynchronous
IWFA will become totally asynchronous IWFA. As we could not simulate infinite B, we
use a time constraint value B = 21 to simulate totally asynchronous IWFA, thus pseudo.
From this figure, we can easily see that totally asynchronous IWFA will be much slower
than partially asynchronous IWFA with a reasonable value of time constraint B. Totally
asynchronous IWFA provides users with the freedom of the choice of the outdated inter-
ference information and some user may update his power strategy slower, which slows
down the convergence speed.
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Figure 7.5: Pseudo-Totally v.s. Partially Asynchronous IWFA

23



Chapter 8

Conclusions and Future Work

This project considers the maximization of information rate on each link in the multiuser
non-cooperative communication system given the constraints on the transmit power. In
order to avoid the high complexity, heavy signaling and the coordination among the users
required by a centralized solution, distributed ways are considered to solve the problem.
By a game theoretical approach, this problem can be formulated as a strategic power
competing game among users and iterative distributed algorithms can be used.

Firstly, I studied the mathematical tools required to solve the problem, for example,
game theory, convex optimization and distributed algorithms. Then I did a survey on
the related researches have been done and went through several important proofs de-
rived by the authors. Finally, I proposed partially asynchronous Iterative Waterfilling
Algorithm, namely partially asynchronous IWFA, to solve the problem. This algorithm
is an extension on the time constraint requirement from the totally asynchronous IWFA
and it is a generalization of sequential, simultaneous and totally asynchronous IWFAs.
The main advantage of the proposed algorithm is that while no rigid scheduling in the
updates of the users is required, the time constraint ensures the convergence speed of the
algorithm: Users are allowed to choose their own strategies whenever they want within
the time constraint and the convergence speed is ensured to certain level. The condition
guaranteeing the convergence of the proposed algorithm has been derived, which is based
on the contraction property of the waterfilling operator.

The proposed partially asynchronous IWFA is based on MIMO system with perfect
channel state information (CSI). I originally considered the system with imperfect CSI;
but I did not find a solution. The channel matrices are assumed to be square nonsin-
gular. More general case on arbitrary channel matrices is discussed in [23]. Though the
algorithm converges to the NE of the strategic power competing game, the NE is not
Pareto-optimal[33]. It has been shown that Pareto-optimal solutions can be achieved as
an NE of the game in selfish but cooperating systems [15, 17]. Further studies on those
aspects will be valuable.
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Appendix A

Proof of Theorem 4.1:
Projection Interpretation of
Waterfilling Mapping

Proof. Problem P1 is a convex problem and satisfies Slater’s condition. The Lagrangian
function L for (4.3) is

L = − log det(R−q(Q−q) +HqqQqH
H
qq)− Tr(ΨTX) + λ(Tr(Qq)− Pq) (A.1)

Then strong duality holds for this problem and it leads to the KKT conditions (Theorem
3.2):

1. primal constraints:

−Qq � 0 (A.2)

Tr(Qq)− Pq ≤ 0 (A.3)

2. dual constraints:

Ψ � 0 (A.4)

λ ≥ 0 (A.5)

3. complementary slackness:

Tr(ΨHQq) = 0 (A.6)

λ(Tr(Qq)− Pq) = 0 (A.7)

4. gradient of Lagrangian with respect to Qq:

−HH
qq(R−q(Q−q) +HqqQqH

H
qq)
−1Hqq −Ψ + λI = 0 (A.8)
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Firstly, let Q0 = −(HH
qqR

−1
−q(Q−q)Hqq)

−1 ≺ 0, so we have

HH
qq(R−q(Q−q) +HqqQqH

H
qq)
−1Hqq

= (H−Hqq )−1(R−q(Q−q) +HqqQqH
H
qq)
−1(H−1

qq )−1

= (H−1
qq R−q(Q−q)H

−H
qq +Qq)

−1

= (Qq + (HH
qqR

−1
−q(Q−q)Hqq)

−1)−1

= (Qq −Q0)−1 � 0 (A.9)

Second, we know that λ 6= 0; otherwise, from (A.8) we have 0 � −HH
qq(R−q(Q−q) +

HqqQqH
H
qq)
−1Hqq = Ψ � 0. Thus λ > 0 and Tr(Qq) = Pq from (A.7).

Thirdly, Tr(ΨHQq) = 0 is equivalent to ΨHQq = 0, ∀ΨH , Qq � 0[34].
Then the KKT system for P1 becomes:

Qq � 0 (A.10)

Tr(Qq) = Pq (A.11)

λ > 0 (A.12)

− (Qq −Q0)−1 + λI � 0 (A.13)

ΨHQq = [−(Qq −Q0)−1 + λI]HQq = 0 (A.14)

As λ > 0, let µ = − 1
λ
, the KKT system for P1 becomes:

Qq � 0 (A.15)

Tr(Qq) = Pq (A.16)

µ < 0 (A.17)

Qq −Q0 + µI � 0 (A.18)

[(Qq −Q0) + µI]HQq = 0 (A.19)

Now let us look at problem P2 which is also a convex problem and satisfies Slater’s
condition. The Lagrangian function L′ for (4.4) is

L′ = 1

2
‖Qq −Q0‖2

F − Tr(ΓHQq) + ν(Tr(Qq)− Pq) (A.20)

The strong duality holds for this problem and it leads to the KKT conditions (Theorem
3.2):

1. primal constraints:

Qq � 0 (A.21)

Tr(Qq) = Pq (A.22)

2. dual constraints:

Γ � 0 (A.23)

ν is free (A.24)
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3. complementary slackness:

Tr(ΓHQq) = 0 (A.25)

ν(Tr(Qq)− Pq) = 0 (A.26)

4. gradient of Lagrangian with respect to Qq:

(Qq −Q0)− Γ + νI = 0 (A.27)

From (A.23) and (A.27), we have Qq − Q0 + νI � 0. From (A.25) and (A.27), we have
[Qq−Q0 +νI]HQq = 0. Let ν = µ, we can easily see that the KKT system (A.15)-(A.19)
for P1 is equivalent to the KKT system for P2 and it can represents the optimality
conditions of problem P2; which completes the proof.
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Appendix B

Proof of Theorem 4.2:
Contraction Property of Waterfilling
Mapping

Given Q(1) = (Q
(1)
1 , ..., Q

(1)
Q ) ∈ Q and Q(2) = (Q

(2)
1 , ..., Q

(2)
Q ) ∈ Q, define

eWFq = ‖WFq(Q
(1)
−q)−WFq(Q

(2)
−q)‖F , ∀q ∈ Ω (B.1)

eWF = [eWF1 , ..., eWFQ
]T (B.2)

eq = ‖Q(1)
q −Q(2)

q ‖F , ∀q ∈ Ω (B.3)

e = [e1, ..., eQ]T (B.4)

Then we have

eWFq = ‖WFq(Q
(1)
−q)−WFq(Q

(2)
−q)‖F (B.5)

= ‖[−(HH
qqR

−1
−q(Q

(1)
−q)Hqq)

−1]Qq − [−(HH
qqR

−1
−q(Q

(2)
−q)Hqq)

−1]Qq‖F (B.6)

≤ ‖(HH
qqR

−1
−q(Q

(1)
−q)Hqq)

−1 − (HH
qqR

−1
−q(Q

(2)
−q)Hqq)

−1‖F (B.7)

(Lemma 4.2: Nonexpansive Property)

= ‖H−1
qq R−q(Q

(1)
−q)H

−H
qq −H−1

qq R−q(Q
(2)
−q)H

−H
qq ‖F (B.8)

= ‖[H−1
qq RnqH

−H
qq +H−1

qq (
∑
r 6=q

HrqQ
(1)
r HH

rq)H
−H
qq ]

− [H−1
qq RnqH

−H
qq +H−1

qq (
∑
r 6=q

HrqQ
(2)
r HH

rq)H
−H
qq ]‖F (B.9)

= ‖H−1
qq (
∑
r 6=q

HrqQ
(1)
r HH

rq)H
−H
qq −H−1

qq (
∑
r 6=q

HrqQ
(2)
r HH

rq)H
−H
qq ‖F (B.10)

= ‖H−1
qq [
∑
r 6=q

Hrq(Q
(1)
r −Q(2)

r )HH
rq ]H

−H
qq ‖F (B.11)

≤
∑
r 6=q

‖H−1
qq Hrq(Q

(1)
r −Q(2)

r )HH
rqH

−H
qq ‖F (Triangular Inequality) (B.12)
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≤
∑
r 6=q

ρ(HH
rqH

−H
qq H−1

qq Hrq)‖(Q(1)
r −Q(2)

r )‖F (B.13)

(‖AXAH‖F ≤ λmax(AHA)‖X‖F , where X = XH and A ∈ Cn×m [29])

=
∑
r 6=q

[S]qr‖(Q(1)
r −Q(2)

r )‖F (B.14)

=
∑
r 6=q

[S]qrer (B.15)

that is, eWFq ≤
∑

r 6=q[S]qrer. By using (B.2) and (B.4), we have

0 ≤ eWF ≤ Se (B.16)

Apply weight maximum norm (Definition 3.5) on (B.16), we have

‖eWF‖w∞,vec ≤ ‖Se‖w∞,vec ≤ ‖S‖w∞,mat‖e‖w∞,vec, ∀Q(1), Q(1) ∈ Q, w > 0 (B.17)

Finally, by using (4.9) and (B.1)-(B.4), we have

‖WF (Q(1))−WF (Q(2))‖wF,block ≤ ‖S‖w∞,mat‖Q(1) −Q(2)‖wF,block (B.18)

∀Q(1), Q(2) ∈ Q and ∀w > 0. If ‖S‖w∞,mat < 1, mapping WF is a block-contraction with
modulus β = ‖S‖w∞,mat, which completes the proof.
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Appendix C

Proof of Theorem 5.1 and 5.2

C.1 Proof of Theorem 5.1: Existence of the NE

1) Qq defined in (2.6) is compact and convex. 2) Rq defined in (2.3) is continuous in
Q ∈ Q and concave in Qq ∈ Qq, which follows from the concavity of log function.
Therefore, the existence of the NE can be proved by Theorem 3.1.

C.2 Proof of Theorem 5.2: Uniqueness of the NE

The uniqueness of the game G is guaranteed by the uniqueness of the solution of the
fixed-point equation (4.6). We have 1) The joint strategy set Q is nonempty, convex and
compact; 2) WFq (4.5) is a continuous mapping from Lemma 4.1 and 4.2; and 3) WFq is
also a contraction mapping if ‖S‖w∞,mat < 1 from Theorem 4.2. Therefore, the existence
of the NE can be proved by Theorem 3.3 if condition ‖S‖w∞,mat < 1 is satisfied. Since S is
a square nonnegative matrix, the condition for the uniqueness of the NE can be ρ(S) < 1
from Theorem 3.7 for some w > 0, which proves the theorem. Note that Theorem 3.3
can also prove the existence of the NE, which is a second method different from the one
presented in the proof of Theorem 5.1.
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Appendix D

Proof of Theorem 6.1:
Convergence of the Algorithms

Proof. We are going to utilize Theorem 3.5 to prove the convergence of the MIMO
(Smoothed) Partially Asynchronous IWFA. Then the key questions are whether the wa-
terfilling operator satisfies Assumption 3.2. Firstly, we define

β = β(w, S) = ‖S‖w∞,mat (D.1)

where S is defined in (4.8). Since S is a square nonnegative matrix, ρ(S) < 1 is equivalent
to ‖S‖w∞,mat < 1 from Theorem 3.7 for some w > 0. As the condition in Theorem 6.1
is ρ(S) < 1, thus condition β = ‖S‖w∞,mat < 1 is also satisfied. Therefore, contraction
property of the waterfilling mapping is satisfied by Theorem 4.2:

‖WF (Q(1))−WF (Q(2))‖wF,block ≤ β‖Q(1) −Q(2)‖wF,block
< ‖Q(1) −Q(2)‖wF,block, ∀Q(1), Q(2) ∈ Q (D.2)

Secondly, we choose the block-maximum norm on Cn×n (Section 3.5) in this report. We
can easily see that the block-maximum norm ‖.‖wF,block corresponds to the notation ‖.‖∞
used in Assumption 3.2. Thus WF (Q) corresponds to T (x) and WFi(Q−i) corresponds
to Ti(x), respectively.

Thirdly, we will go through all the assumptions in Assumption 3.2.
Assumption 3.2(a):

From Theorem 5.1 and 5.2, we know that there exists unique solution for game G. Thus
the solution set Q∗ is nonempty and convex.

Assumption 3.2(b):
The function here is the waterfilling operator which has been proved to be continuous
and nonexpansive by Lemma 4.1 and 4.2. Also, for ∀Q ∈ Q, Q∗ ∈ Q∗, from (4.10) and
(D.2) we have

‖WF (Q)−Q∗‖wF,blcok = ‖WF (Q)−WF (Q∗)‖wF,blcok
< ‖Q−Q∗‖wF,blcok (D.3)
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Assumption 3.2(c):
Let ∀Q ∈ Q, Q∗ ∈ Q∗ and ‖Q − Q∗‖wF,blcok > 0. Assume that user i ∈ Ω = {1, ..., Q}
satisfies

‖Qi −Q∗i ‖
wi
F = max

i

‖Qi −Q∗i ‖F
wi

= ‖Q−Q∗‖wF,blcok (D.4)

Therefore, from (4.10), (D.2) and (D.4), we have

‖WFi(Q−i)−Q∗i ‖
wi
F ≤ max

i

‖WFi(Q−i)−Q∗i ‖F
wi

= ‖WF (Q)−Q∗‖wF,blcok
= ‖WF (Q)−WF (Q∗)‖wF,blcok
< ‖Q−Q∗‖wF,blcok
= ‖Qi −Q∗i ‖

wi
F (D.5)

Thus we get WFi(Q−i) 6= Qi.
Assumption 3.2(d):

Let Q ∈ Q, WFi(Q−i) 6= Qi and Q∗ ∈ Q∗, we have the following similar to (D.5):

‖WFi(Q−i)−Q∗i ‖
wi
F ≤ max

i

‖WFi(Q−i)−Q∗i ‖F
wi

= ‖WF (Q)−Q∗‖wF,blcok
= ‖WF (Q)−WF (Q∗)‖wF,blcok
< ‖Q−Q∗‖wF,blcok (D.6)

By now, we have proved that the waterfilling operator satisfies all the assumptions in
Assumption 3.2 and Assumption 3.1 (Partial Asynchronism) holds for MIMO Partially
Asynchronous IWFA. Therefore, from Theorem 3.5, we know that the MIMO Partially
Asynchronous IWFA described in Algorithm 1 converge to the unique NE of game G.

As the waterfilling operator satisfies Assumption 3.2 (thus satisfies Assumption 3.2(a),
(b) and (c)), from Theorem 3.4, we know that the smoothed waterfilling mapping

WF ′(Q) = γQ+ (1− γ)WF (Q), γ ∈ (0, 1) (D.7)

also satisfies Assumption 3.2. And when γ = 0, the smoothed waterfilling mapping be-
comes the original waterfilling mapping. Therefore, the smoothed waterfilling mapping
actually satisfies Assumption 3.2 for γ ∈ [0, 1). As Assumption 3.1 (Partial Asynchro-
nism) holds for MIMO Smoothed Partially Asynchronous IWFA, from Theorem 3.5, we
know that the MIMO Smoothed Partially Asynchronous IWFA described in Algorithm
2 also converge to the unique NE of game G.

Finally, we complete the proof.
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